更新时间:2019-10-12
力士乐伺服电磁阀4WRPEH6CB24L-30/M/24F1,力士乐比例伺服阀,REXROTH伺服电磁阀,力士乐比例电磁阀
力士乐伺服电磁阀4WRPEH6CB24L-30/M/24F1,米兰官方手机app网站 专注于液压、气动、工控自动化备件销售,热诚欢迎新老客户咨询购买!
伺服阀是-种根据输入信号及输出信号反馈量连续成比例地控制流量和压力的液压控制阀。根据输入信号的方式不同,又分电液伺服阀和机液伺服阀。电液伺服阀将小功率的电信号转换为大功率的液压能输出,实现执行元件的位移、速度、加速度及力的控制。
电液伺服阀由电气一机械转换装置、液压放大器和反馈(平衡)机构三部分组成。
电气一机械转换装置将输入的电信号转换为转角或直线位移输出,常称为力矩马达或力马达。
电液比例阀是一种性能介于普通控制阀和电液伺服阀之间的新阀种。它既可以根据输入电信号的大小连续成比例地对油液的压力、流量、方向实现远距离控制、计算机控制,又在制造成本、抗污染等方面优于电液伺服阀。
电液比例阀根据用途分为:电液比例压力阀,电液比例流量阀,电液比例方向阀。
电液比例阀的控制性能低于电液伺服阀,因此广泛应用于要求不高的一般工业部门。
电液比例溢流阀
组成:
比例电磁铁+直动式溢流阀主体
工作原理:
输入一I,产生一电磁力,作用于阀心上,得到- -控制压力,其pI, I变化,p也变化。
电液比例换向阀
比例电磁铁替代普通电磁换向阀中的普通电磁铁即可。
工作原理:输入- ~I,得到一个运动方向,并且还可改变输出流量的
大小;改变电流信号极性,即可改变运动方向。
比例调速阀
组成:
比例电磁铁替代调速阀中的调节螺帽即可。
工作原理:输入—I, 得到一相应运动,使节流阀阀口变化,流量变化,qV∞I。
电液比例阀是比例控制系统中的主要功率放大元件,按输入电信号指令连续地成比例地控制液压系统的压办流量等参数。与伺 服控制系统中的伺服阀相比,在某些方面还有一-定的性能差距(主要性能比较如表1所示),但它显著的优点是抗污染能力强,大大地减少了由污染而造成的工作故障,提高了液压系统的工作稳定性和可靠性。另一方面比例阀的成本比伺服阀低,结构也简单,已在许多场合获得广泛应用。
比例阀按功能分为三大类
(1)比例压力阀。有溢流阀减压阀,分别有直动和先导两种结构;可连续地或按比例地远程控制其输出油液压力;
(2)比例换向阀。有直动和先导两种结构,直动阀有带位移传感器和不带位移传感器两类。由于使用了比例电磁铁阀芯不仅可以换位,而且换位的行程可以连续地或按比例地变化。因而连通油口间的通流面积也可以连续或按比例地变化。所以比例换向阀不仅能够控制执行元件的方向而且能够控制其速度。因为这个原因比例阀中的比例换向阀应用也为普遍;
(3)比例流量阀。有比例调速阀和比例溢流流量控制阀,可连续地或按比例地远程控制其输出流量。
比例阀的输入单元是电-机械转换器,它将输入的电信号转换成机械量转换器有伺服电机和步进电机力马达和力矩马达比例电磁铁等形式。但常用的比例阀大都采用了比例电磁铁,比例电磁铁根据电磁原理设计,能使其产生的机械量(力或力矩和位移)与输入电信号(电流)的大小成比例,再连续地控制液压阀阀芯的位置,进而实现连续地控制液压系统的压力方向和流量。比例电磁铁的结构,它由线圈、衔铁推杆等组成,当有信号输入线圈时,线圈内磁场对衔铁产生作用力,衔铁在磁场中按信号电流的大小和方向成比例连续地运动,再通过固连在一起的销钉带动推杆运动,从而控制滑阀阀芯的运动。应用广泛的比例电磁铁是耐高压直流比例电磁铁。
比例电磁铁的类型按照工作原理主要分为
如下几类:
(1)力控制型
这类电磁铁的行程短,只有1 5mm,输出力与输入电流成正比,常用在比例阀的先导控制级
上:
(2)行程控制型
由力控制型加负载弹簧共同组成,电磁铁输出的力通过弹簧转换成输出位移,输出位移与输入电流成正比,工作行程达3mm,线性好,可以用在直控式比例阀上;
(3)位置调节型
衔铁的位置由传感器检测后,发出一个阀内反馈信号,在阀内进行比较后重新调节衔铁的位置。阀内形成闭环控制,精度高,衔铁的位置与力
无关,精度高的比例阀如德国的博世意大利的阿托斯等都采用这种结构。
比例阀与放大器配套使用放大器采用电流负反馈,设置斜坡信号发生器阶跃函数发生器、PD调节器反向器等,控制升压降压时间或运动加速度及减速度。断电时, 能使阀芯处于安全位置。
比例电磁铁和液压阀组成电液比例阀。由于比例电磁铁可以在不同的电流下得到不同的力(或行程),因此可以无级改变压力、流量。故比例电磁铁是比例阀的关键元件。
(1)比例环节
比例环节也称为无惯性环节,对液压缸或马达,忽略液压油的可压缩性和泄漏,液压缸的流量Q= VA。其中V为活塞速度;A为活塞面积。其传递函数为: g(s)= V (s)/Q(s)= 1/A =式中K为比例环节放大系数或增益,表示输入量经过放大K倍后输出。
(2)比例控制系统
比例控制系统根据有无反馈分为开环控制和闭环控制。如比例阀控制液压缸或马达系统可以实现速度位移转速和转矩等的控制。
由于开环控制系统的精度比较低,无级调节系统输入量就可以无级调节系统输出量力速度以及加减速度等。这种控制系统的结构组成简单,系统的输出端和输入端不存在反馈回路,系统输出量对系统输入控制作用没有影响,没有自动纠正偏差的能力,其控制精度主要取决于关键元器件的特性和系统调整精度,所以只能应用在精度要求不高并且不存在内外干扰的场合。开环控制系统一.般不存在所谓稳定性问题。
闭环控制系统(即反馈控制系统)的优点是对内部和外部干扰不敏感,系统工作原理是反馈控制原理或按偏差调整原理。这种控制系统有通
过负反馈控制自动纠正偏差的能力。但反馈带来了系统的稳定性问题,只要系统稳定,闭环控制系统可以保持较高的精度。因此, 目前普遍采用闭环控制系统。
力士乐伺服电磁阀4WRPEH6CB24L-30/M/24F1
力士乐REXROTH伺服电磁阀四位四通高频单向阀门,直接驱动,带有集成电子和电气位置反馈(OBE)4WRPEH 6 -3X
R901382520 4WRPEH6CB02L-3X/M/24A1
R901382376 4WRPEH6CB02L-3X/M/24F1
R901382365 4WRPEH6CB04L-3X/M/24A1
R901382374 4WRPEH6CB04L-3X/M/24F1
R901382505 4WRPEH6CB04L-3X/V/24F1
R901382492 4WRPEH6CB04P-3X/M/24A1
R901382334 4WRPEH6CB08P-3X/M/24A1
R901382337 4WRPEH6CB12L-3X/M/24A1
R901382371 4WRPEH6CB12L-3X/M/24F1
R901382530 4WRPEH6CB15P-3X/M/24A1
R901429091 4WRPEH6CB15P-3X/M/24F1
R901381804 4WRPEH6CB24L-3X/M/24A1
R901382372 4WRPEH6CB24L-3X/M/24F1
R901382526 4WRPEH6CB24L-3X/V/24F1
R901382490 4WRPEH6CB25P-3X/M/24A1
R901382353 4WRPEH6CB40L-3X/M/24A1
R901382354 4WRPEH6CB40L-3X/M/24F1
R901438744 4WRPEH6CB40L-3X/V/24A1
R901382630 4WRPEH6CB40P-3X/M/24A1
R901382375 4WRPEH6CB40P-3X/M/24F1
R901382538 4WRPEH6C1B12L-3X/M/24A1
R901436252 4WRPEH6C1B12L-3X/M/24F1
R901382527 4WRPEH6C1B24L-3X/M/24A1
R901382491 4WRPEH6C1B24L-3X/M/24F1
R901423624 4WRPEH6C1B24L-3X/V/24A1
R901382325 4WRPEH6C1B40L-3X/M/24A1
R901382487 4WRPEH6C1B40L-3X/M/24F1
R901382495 4WRPEH6C1B40P-3X/M/24A1
R901396969 4WRPEH6C3B04L-3X/M/24F1-885
R901376972 4WRPEH6C3B24L-3X/V/24F1
R901410492 4WRPEH6C3B40L-3X/M/24A1-15
R901382367 4WRPEH6C3B02L-3X/M/24A1
R901382336 4WRPEH6C3B02L-3X/M/24F1
R901382345 4WRPEH6C3B04L-3X/M/24A1
R901382347 4WRPEH6C3B04L-3X/M/24F1
R901382488 4WRPEH6C3B04L-3X/V/24A1
伺服控制阀
伺服控制阀输入信号(电量、机械量)多为偏差信号(输入信号与反馈信号的差值),阀的输出量(压力、流量)也按照其输入量连续、成比例地进行控制的阀。这类阀的工作性能类似于比例控制阀,但具有较高的动态瞬应和静态性能,多用于要求较高的、响应快的闭环液压控制系统。
大型钢厂现场采用的主要伺服阀如:伺服阀,
1、基本结构:
主阀体(阀芯/阀套)、先导阀(伺服射流管)、电气控制盒(放大版)
2、工作原理
伺服射流管先导级
射流管先导级主要由力矩马达、射流管和接收器组成。
当线圈中有电流通过时,产生的电磁力使射流管喷嘴偏离零位,管内的大部分液流集中射向一侧的接收器,而另一侧接收 器所得到的流量减少,由此造成两接收器的压力变化。主阀阀芯因此压差而产生位移。
先导级的泄漏油通过喷嘴环形区域处的排出通道直接回油箱。
多级阀的工作原理
多级阀中的功率级阀芯的位置闭环控制是由阀内控制电路来实现的。对控制电路中的位移控制器输入一个指令信号(与阀期望输出的流量成正比),同时位移传感器通过一激励器测出功率级阀芯的实际位移(以与实际位移成正比的电压形式出现),次位移信号被调解并反馈至位移控制器与指令信号相比较,得出的偏移信号驱动先导级并使功率级阀芯
产生位移,直至偏差信号为零。
由此得到功率级滑阀的位移与指令电信号成正比。
液压原理图和基本回路分析
液压原理图及阀件分布简介
一、伺服控制回路
2.辊缝控制模式
1.闭环控制模式
轧机轧辊的调整由一个闭环辊缝控制系统完成。通常的轧制操作在闭环辊缝控制模式下。TCS和其控制器接收辊缝设定值数据并在此模式下控制轧制。
在闭环模式下TCS的功能总是一个位置控制功能。这也包括在可允许大轧制力已经达到时的状态,在这种情况下,通过内部控制器,辊缝设定到不超过大允许轧制力。在辊缝设定时,轧制力控制的TCS功能取代位置控制。
每个调整液压缸带有一个带有设定值、位置数值和设定点数值的控制器。
液压阀位置:
(1)泄荷阀关闭;
(2) 单向阀打开;
(3) 伺服阀从TCS控制器中接到一个适当的设定值。
2.锁定控制模式
在辊缝位置处于维持状态, 新设定点或偏离不会引|起辊缝变化, 控制模式处于锁定状态。
为避免辊缝的偏差,锁定模 式功能必须对控制辊缝的两液压缸同时控制。
液压阀位置:
(1)泄荷阀关闭;
(2)单向阀关闭;
(3)伺服阀从TCS控制器中接到一个设定值0。
3.快速打开和卸压模式
该功能主要用于轧机保护。特别是如果轧件在轧机中遇到冲击,必须立即中断轧机操作。这意味着在轧机调整过程中立即减小轧制压力,并且打开辊缝到大辊缝尺寸。相对应的是,当该功能结束时,所有水平辊和立辊的液压缸柱塞杆全部缩回。
卸压并且下一步所有的液压缸同时打开。轧辊以-一个控制方式打开,避免单个轧辊位置过分的倾斜。倾斜检测系统发挥作用。
液压阀的位置:
(1)卸荷阀关闭;
(2)单向阀打开;
(3)伺服阀从控制器中接收到大打开设定值。
当某个轧辊的液压缸柱塞杆已全部缩回,伺服阀设定值被清零时,单向阀关闭,并且快速的卸荷信号传输到一级PLC中。然后,卸压阀打开2秒时间。
4.非卸压模式
该控制模式可靠地卸载压力系统。因安全原因,该功能在快速打开状态的末端发生。而且,该功能在从等待工作状态到准备操作I作状态转换之前执行。这避免了当单向阀打开时在轧辊液压系统由压力弓|起的失控动作。
为了 避免轧辊的过度倾斜,两个液压缸的该功能必须同时发生。
液压阀的位置:
(1)单向阀关闭
(2)伺服阀从TCS控制器中接收到一个零值
(3)卸荷阀关闭。
5.浮动模式 .
浮动模式是一个控制器模式,在此模式下通过外力的动作轧辊能够自由的移动。浮动模式定义为下辊的轴向移动。在浮动模式下,下辊根据与上辊的相互关系,以一一个标定状态顺序被轴向定位。该移动通过立辊。
液压阀的位置:
(1)卸荷阀打开;
(2)单向阀关闭;
(3)伺服阀从TCS控制器中接收到零设定值。
6.轴向调整系统脱离模式
液压系统和轴向移动位移编码器的连接在此操作模式下被引入一个条件,在此模式下液压插头和位移编码器插头能被松开或插上。位移编码器的插头必须插入在机架_上的插口。接着插头在一个停车位置。该停车位置由TCS电气检测。
液压阀的位置:
(1)单向阀关闭;
(2)伺服阀从TCS控制器中接收到一个零值
(3)卸荷阀关闭。;
当条件1达到时,轴向移动编码器的能量供应断开。
当条件1+ 2获得时, 1级控制给出“断开位 置编码器轴向移动信号已准备好”
检测插头是否在停车位置。如果在,轴向移动系统已准备好换辊。
7.轴向调整系统连接模式
在此模式下;液压系统和轴向位移编码器的连接被采用了一个前提,即液压插头和位移编码器插头能被反向插到辊系内。
液压阀的位置:
(1)单向阀关闭
(2)伺服阀从TCS控制器中接收到一个零值
(3)卸荷阀关闭。
当条件1已产生时,一级控制系统接到“位置编码器轴向移动信号连接准备好”。检
测信号插头是否已与位置编码器E连接。
当条件3已产生时,轴向移动位移编码器有效轴向移动系统准备好冲洗。
8.轴向调整系统冲洗模式
冲洗模式是一个控制器模式用于换完辊后从轴向移动系统清除空气和污染物。在能够设定辊缝前的一个短时间内,轴向系统需要冲洗。
当液压管路和位移编码器连接后,可以由操作者立即开始冲洗。手动操作的截止阀必须打开使其能够冲洗。当冲洗结束后手动截止阀必须关闭。
液压阀的位置:
(1)卸荷阀关闭
(2)截止阀打开
(3)伺服阀从TCS控制器中接收到一个+ 20%的设定值。( 注:明确的设定值,因为液压缸预期向DS侧移动)
冲洗时间是120秒。操作侧压力应该接近180bar。如果适当,可用一一个较低的设定值。如果操作侧压力升到大约250bar时,必须中断冲洗,并且-一个故障报警传到1级。一个可能的原因是截止阀( 421 )没有被打开。
当冲洗期已过,该阀转到下一个位置:
(1)卸荷阀关闭
(2)手动关闭截止阀
(3)伺服阀从TCS控制器中接收到一个0阀设定值。
(4)当冲洗结束时,该结果的一个信号被送到1级控制系
力士乐REXROTH伺服比例阀,力士乐伺服电磁阀,力士乐比例换向阀,力士乐比例方向阀:
R901382514 4WRPEH6C3B04L-3X/V/24F1
R901382316 4WRPEH6C3B04P-3X/M/24A1
R901382502 4WRPEH6C3B04P-3X/M/24F1
R901382496 4WRPEH6C3B04P-3X/V/24A1
R901382537 4WRPEH6C3B04P-3X/V/24F1
R901396859 4WRPEH6C3B08L-3X/M/24A1
R901382504 4WRPEH6C3B08L-3X/V/24F1
R901382312 4WRPEH6C3B12L-3X/M/24A1
R901382348 4WRPEH6C3B12L-3X/M/24F1
R901382503 4WRPEH6C3B12L-3X/V/24A1
R901382513 4WRPEH6C3B12L-3X/V/24F1
R901382323 4WRPEH6C3B15P-3X/M/24A1
R901382511 4WRPEH6C3B15P-3X/M/24F1
R901382522 4WRPEH6C3B15P-3X/V/24A1
R901382313 4WRPEH6C3B24L-3X/M/24A1
R901382349 4WRPEH6C3B24L-3X/M/24F1
R901372986 4WRPEH6C3B24L-3X/V/24A1
R901382357 4WRPEH6C3B25P-3X/M/24A1
R901382535 4WRPEH6C3B25P-3X/M/24F1
R901382315 4WRPEH6C3B40L-3X/M/24A1
R901382350 4WRPEH6C3B40L-3X/M/24F1
R901382343 4WRPEH6C3B40L-3X/V/24A1
R901382516 4WRPEH6C3B40L-3X/V/24F1
R901382358 4WRPEH6C3B40P-3X/M/24A1
R901382539 4WRPEH6C3B40P-3X/M/24F1
R901382356 4WRPEH6C4B02L-3X/M/24A1
R901382338 4WRPEH6C4B02L-3X/M/24F1
R901382525 4WRPEH6C4B02L-3X/V/24F1
R901382317 4WRPEH6C4B04L-3X/M/24A1
R901382327 4WRPEH6C4B04L-3X/M/24F1
R901382528 4WRPEH6C4B04L-3X/V/24F1
R901382533 4WRPEH6C4B04P-3X/M/24A1
R901382318 4WRPEH6C4B12L-3X/M/24A1
R901412522 4WRPEH6C4B12L-3X/M/24A1-561
R901382331 4WRPEH6C4B12L-3X/M/24F1
R901431666 4WRPEH6C4B12L-3X/V/24A1
1、液压阀的作用:控制液流的压力、流量和方向,保证执行元件按照要求进行工作。
2、液压阀的基本结构:包括阀芯、阀体和驱动阀芯在阀体内作相对运动的装置。
3、液压阀的工作原理:利用阀芯在阀体内作相对运动来控制阀口的通断及阀口的大小,实现压力、流量和方向的控制。
液压阀的分类:
1根据结构形式分类
滑阀:滑阀为间隙密封,阀芯与阀口存在一定的密封长度,因此滑阀运动存在一个死区。
锥阀:锥阀阀芯半锥角一 般为12°-20°,阀口关闭时为线密封,密封性能好且动作灵敏。
球阀:性能与锥阀相同
2.根据控制制方式不同分:
定值或开关控制阀:被控制量为定值的阀类,包括普通控制阀、插装阀、叠加阀。
比例控制阀:被控制量与输入信号成比例连续变化的阀类,包括普通比
例阀和带内反馈的电液比例阀。
伺服控制阀:被控制量与(输出与输入之间的)偏差信号成比例连续变化的阀类,包括机液伺服阀和电液伺服阀。.
数字控制阀:用数字信息直接控制阀口的启闭,来控制液流的压力、流
量、方向的阀类。
3.根据用途分:
压力控制阀、流量控制阀、方向控制阀
方向控制阀的作用:在液压系统中控制液流方向。
方向控制阀包括:单向阀和换向阀
单向阀包括:普通单向阀和液控单向阀
1.普通单向阀
使油液只能沿-一个方向流动,反向则被截止的方向阀。
普通单向阀的应用
常被安装在泵的出口,一方面防止压力冲击影响泵的正常工作,另-方面防止泵不工作时系统油液倒流经泵回油箱。
被用来分隔油路以防止高低压干扰。:
与其他的阀组成单向节流阀、单向减压阀、单向顺序阀等复合阀。
安装在执行元件的回油路上,使回油具有一定背压。作背压阀的单向阀应更换刚度较大的弹簧,其正向开启压力为( 0. 3~0.5) MPa。
2.液控单向阀
外泄式液控单向阀,内泄式单向阀
工作原理:当控制油口不通压力油时,油液只能从pi→P:当控制油口通压力油时,正、反向的油液均可自由通过。
3.换向阀
换向阀是利用阀芯在阀体孔内作相对运动,使油路接通或切断而改变油流方向的阀。
换向阀的分类
按结构形式可分:滑阀式、转阀式、球阀式。
按阀体连通的主油路数可分:两通、三通、四通...等。
按阀芯在阀体内的工作位置可分:两位、三位、四位等。
按操作阀芯运动的方式可分:手动、机动、电磁动、液动、电液动等。
换向阀的中位机能,多位阀在不同工作位置时,各油口的连通方式体现了换向阀的不同的控制机能,称之为换向阀的机能。对于三位阀,左、右位实现执行元件的换向,中位则能满足执行元件处于非工作状态时系统的不同要求。
4.压力控制阀
压力控制阀的作用:
1、用来控制液压系统中油液压力;
1)溢流阀:直动式溢流阀、先导式溢流阀
2)减压阀
2、以压力为控制信号实现油路通断。
3)顺序阀
4)压力继电器
共同工作原理:利用作用于阀心上的液压力与弹簧力相平衡的原理进行工作。
溢流阀应用实例
(1)为定量泵系统溢流稳压和定量泵、节流阀并联,阀口常开。
(2)变量泵系统提供过载保护
和变量泵组合,正常工作时阀口关闭,过载时打开,起安全保护作用,
故又称安全阀。
(3)实现远程调压 p远程< p主调
(4)系统卸荷和多级调压 和二位二通阀组合(先导式)
(5)形成背压
减压阀用于降低并稳定系统中某一支路的油液压力,常用于夹紧、控制等油路中。
顺序阀是一种利用压力控制阀口通断的压力阀,因用于控制多个执行元件的动作顺序而得名。按控制油来源不同分内控和外控,按弹簧腔泄漏油引出方式不同分内泄和外泄。
压力继电器功用:根据系统压力变化,自动接通或断开电路,实现程序控制或安全保护。
工作原理: pk> pT时,柱塞上升,发出信号pk< pT时,柱塞下降,断开信号。
5.流量控制阀
功用:通过改变阀口过流面积来调节输出流量,从而控制执行元件的运动速度。
分类:节流阀、调速阀、温度补偿调速阀、分流集流阀。
常用节流口结构有锥形、三角槽形、矩形、三角形等。由节流方程知,当压力差.定时,改变开口面积即改变液阻就可改变流量。
节流阀实质相当于-一个可变节流口,借助控制机构使阀芯相对于阀体孔运动改变阀口的过流面积。
结构原理
主要零件有阀芯、阀体和螺母。阀体上右边是进油口,左边是出油口。阀芯一端开有三角尖槽,另-端加工有螺纹,旋转阀芯即可轴向移动改变阀口过流面积。为平衡液压径向力,三角槽须对称布置。
调速阀定差减压阀与节流阀串联而成,用来调节通过的流量自动补
偿负载变化的影响。
插装阀
上世纪70年代初发展起来的一种新元件,是古老锥阀的新应用。配以盖板、先导阀组成的-种多功能的复合阀。因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀。
特点:
阀芯为锥阀,密封性能好,且动作灵敏;
通流能力大,抗污染;
一阀多用,易组成各式系统,结构紧凑。
特别对大流量及非矿物油介质的场合,优点更为突出。
插装阀基本组件由阀芯、阀套、弹簀和密封圈组成。根据用途不同分为方向阀组件、压力阀组件和流量阀组件。
插装阀的应用
单向阀
将方向阀组件的控制口通过阀块和盖板上的通道与油口A或B直接沟通,可组成单向阀。
二通阀
由一个二位三通电磁滑阀控制方向阀组件控制腔的通油方式,可组成二位二通阀。
三通阀
由两个方向阀组件并联而成,对外形成-一个压力油口、-一个工作油口和一一个回油口。三通插装阀的工作状态数取决于先导换向阀的工作位置数。
四通阀由两个三通阀并联而成。
叠加阀以板式阀为基础,每个叠加阀不仅起到单个阀的功能,而且还沟通阀与阀的流道。换向阀安装在上方,对外连接油口开在下边的底板上,其他的阀通过螺栓连接在换向阀和底板之间。
由叠加阀组成的系统结构紧凑,配置灵活,设计制造周期短。
米兰官方手机app网站
地址:湖北省武汉市蔡甸区长江路505号长江楚韵1栋2单元1502室
版权所有:米兰官方手机app网站 备案号:鄂ICP备19022174号-4 总访问量:288713 站点地图 技术支持:化工仪器网 管理登陆